Arc Length Estimation and the Convergence of Polynomial Curve Interpolation
نویسندگان
چکیده
When fitting parametric polynomial curves to sequences of points or derivatives we have to choose suitable parameter values at the interpolation points. This paper investigates the effect of the parameterization on the approximation order of the interpolation. We show that chord length parameter values yield full approximation order when the polynomial degree is at most three. We obtain full approximation order for arbitrary degree by developing an algorithm which generates more and more accurate approximations to arc length: the lengths of the segments of an interpolant of one degree provide parameter intervals for interpolants of degree two higher. The algorithm can also be used to estimate the length of a curve and its arc-length derivatives. AMS subject classification (2000): 65D05, 65D10.
منابع مشابه
Approximation of circular arcs by parametric polynomial curves
In this paper the approximation of circular arcs by parametric polynomial curves is studied. If the angular length of the circular arc is h, a parametric polynomial curve of arbitrary degree n ∈ N, which interpolates given arc at a particular point, can be constructed with radial distance bounded by h2n. This is a generalization of the result obtained by Lyche and Mørken for odd n.
متن کاملParameterization for curve interpolation
A common task in geometric modelling is to interpolate a sequence of points or derivatives, sampled from a curve, with a parametric polynomial or spline curve. To do this we must first choose parameter values corresponding to the interpolation points. The important issue of how this choice affects the accuracy of the approximation is the focus of this paper. The underlying principle is that ful...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملHermite interpolation by Pythagorean hodograph curves of degree seven
Polynomial Pythagorean hodograph (PH) curves form a remarkable subclass of polynomial parametric curves; they are distinguished by having a polynomial arc length function and rational offsets (parallel curves). Many related references can be found in the article by Farouki and Neff on C1 Hermite interpolation with PH quintics. We extend the C1 Hermite interpolation scheme by taking additional c...
متن کاملComputation of optimal composite re-parameterizations
Rational re-parameterizations of a polynomial curve that preserve the curve degree and [0,1] parameter domain are characterized by a single degree of freedom. The “optimal” re-parameterization in this family (that comes closest under the L2 norm to arc-length parameterization) can be identified by solving a quadratic equation, but may exhibit too much residual parametric speed variation for mot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005